
Effective Use of Accelerators
Blue Waters Petascale Project

May 11, 2015

Wen-Mei Hwu

void MultiplyWithAMP(int* aMatrix, int* bMatrix, int *productMatrix) {

array_view<int, 2> a(3, 2, aMatrix);

array_view<int, 2> b(2, 3, bMatrix);

array_view<int, 2> product(3, 3, productMatrix);

parallel_for_each(

product.extent,

[=](index<2> idx) restrict(amp) {

int row = idx[0];

int col = idx[1];

for (int inner = 0; inner < a.get_extent()[1]; inner++) {

product[idx] += a(row, inner) * b(inner, col);

);

product.synchronize();

}

GPU data modeled

as data container

C++AMP Overview

Execution interface;

marking an implicitly

parallel region for GPU

execution

C++ AMP

Clang/LLVM 3.3

Device
Code

Host
Code

Kernels modeled as

lambdas; arguments

are implicitly modeled

as captured variables

gmac

● Device Path
o generate OpenCL C

code by CBackend
o emit kernel function

● Host Path
o preparation to launch

the code

MxPA Overview
OpenCL kernel

CPU
Core

CPU
Core

CPU
Core

CPU
Core

multithreading, load balancing, locality

region-serialization
preserves barrier

semantics locality-centric
scheduling, vectorization

0

0.2

0.4

0.6

0.8

1

AMD Intel LC (no vec.) LC

MxPA (LC) Performance
Sp

e
e

d
u

p
(n

o
rm

a
liz

ed
 t

o
 f

a
st

es
t)

LC (with vec.) outperforms AMD (without vec.) and Intel (with vec.) by 3.32x and 1.71x

LC (without vec.) is faster than Intel (with vec.) by 1.04x

Other Compilers and Libraries

OpenACC
• Compiler directives to identify which areas of code to accelerate, without

requiring modification to the underlying code itself.

• Allow the compiler to do the detailed work of mapping the computation
onto the accelerator.

NVIDIA Thrust C++:
• GPU computing through the standard C++ template interface.

• Provides a flexible, high-level interface for GPU programming that greatly
enhances developer productivity.

Working with IMPACT

Experience in Education and
Collaboration

– PUMPS summer schools.

– Porting real-world DOE
applications.

Deep Knowledge of Devices,
Programming, and Compilers

– Expertise with heterogeneous
devices.

– Close-to-metal programming
for performance-critical
libraries.

Objective of Collaboration

More science in less time.

C++ AMP, MxPA, Thrust,
Cray, PGI

– Significant reduction in
heterogeneous cluster
programming complexity.

Improving community tools
and libraries.

Questions?

Thanks for your time

